

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Conformational Analysis of the Inclusion Complex of 3-Hydroxy-2-Naphthalenecarboxylate Anion with Heptakis-(2,3,6-Tri-Omethyl)- β -Cyclodextrin by 2D ^1H nmr

Zheng-Ping Yi^a, Jun Hu^a, Qing Huang^a, Hui-Lan Chen^a

^a Department of Chemistry, State Key Laboratory and Institute of Coordination Chemistry, Nanjing University, Nanjing, P. R., China

To cite this Article Yi, Zheng-Ping , Hu, Jun , Huang, Qing and Chen, Hui-Lan(2000) 'Conformational Analysis of the Inclusion Complex of 3-Hydroxy-2-Naphthalenecarboxylate Anion with Heptakis-(2,3,6-Tri-Omethyl)- β -Cyclodextrin by 2D ^1H nmr', Spectroscopy Letters, 33: 3, 407 — 413

To link to this Article: DOI: 10.1080/00387010009350087

URL: <http://dx.doi.org/10.1080/00387010009350087>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**CONFORMATIONAL ANALYSIS OF THE INCLUSION COMPLEX
OF 3-HYDROXY-2-NAPHTHALENECARBOXYLATE ANION WITH
HEPTAKIS-(2,3,6-TRI-O-METHYL)- β -CYCLODEXTRIN BY 2D ^1H NMR**

Keywords: inclusion; heptakis-(2,3,6-tri-o-methyl)- β -cyclodextrin; 3-hydroxy-2-naphthalenecarboxylate; 2D ^1H NMR

Zheng-Ping Yi, Jun Hu, Qing Huang and Hui-Lan Chen*

State Key Laboratory and Institute of Coordination Chemistry,
Department of Chemistry, Nanjing University, Nanjing, 210093, P. R. China

ABSTRACT

Conformational analysis of the inclusion complex of heptakis-(2,3,6-tri-o-methyl)- β -cyclodextrin(TM β -CD) with the 3-hydroxy-2-naphthalenecarboxylate anion in D_2O was undertaken by 1D and 2D ^1H NMR measurements. The results show that the naphthyl group of 3-hydroxy-2-naphthalenecarboxylate anion inserts lengthwise into the TM β -CD cavity from the 6-OCH₃ side with an angle of the molecular axis.

* Corresponding author

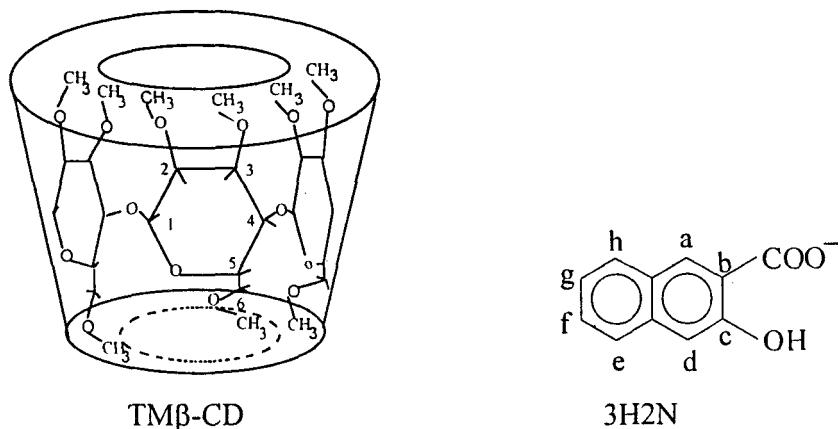
INTRODUCTION

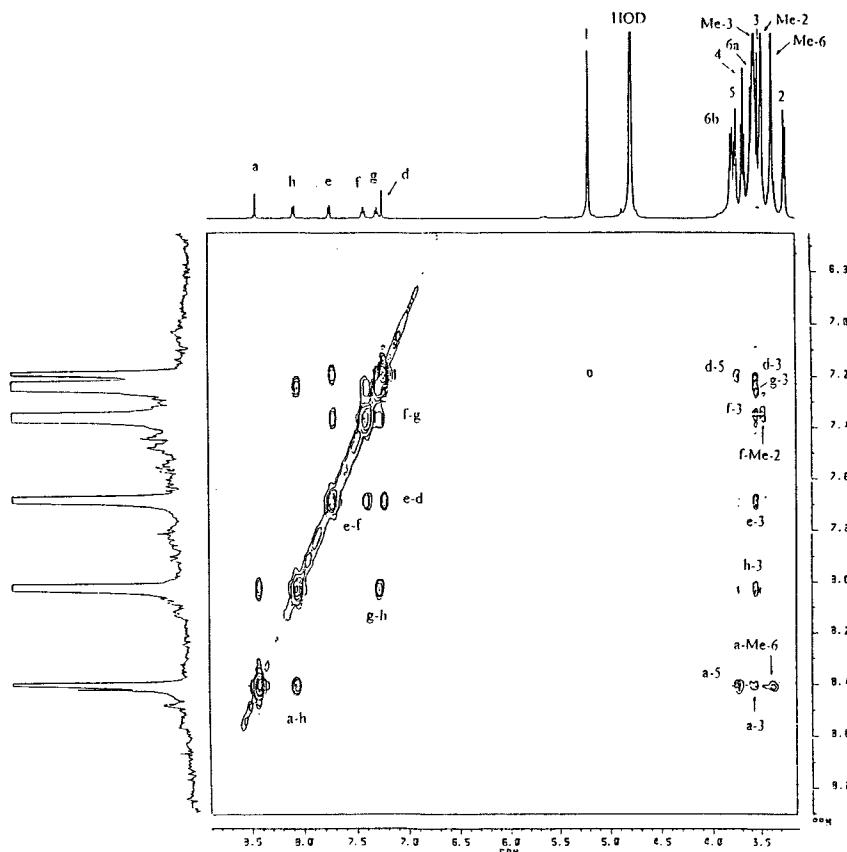
It is well known that cyclodextrins(CDs) can include various guests into their hydrophobic cavities, leading to changes of the physical and chemical properties of the guests.¹ Permetylation of β -CD to form heptakis-(2,3,6-tri-*o*-methyl)- β -cyclodextrin (TM β -CD) greatly improves its aqueous solubility, which may have pharmaceutical advantages to increase the often poor aqueous solubility of the apolar drug molecules.^{2a} Compared to β -CD, TM β -CD and its inclusion complexes have been studied less comprehensively. The current NMR technique is a powerful tool for structural and conformational analysis of the inclusion complex of CDs. The conformation of the inclusion complex of β -CD with benzene derivatives has been examined closely in aqueous solution, however, only a little work has been done for substituted naphthalene.³ Furthermore, CDs can be used as catalysts themselves because they can provide a confinement environment caused by inclusion of the guest into the β -CD cavity, and the orientation direction of the guest in the β -CD cavity is thought to play an important role.³⁻⁷ H. Hirai, et al. have found that the carboxylation of benzoic acid and 4-biphenylcarboxylic acid with carbon tetrachloride and copper powder in aqueous alkali can proceed with 100% selectivity in the presence of β -CD.³ However, without β -CD the reaction cannot take place.

This paper reports the first investigation of the orientation of 3-hydroxy-2-naphthalenecarboxylate anion (3H2N), in the cavity of TM β -CD, in aqueous solution, by measurements of the 1D ^1H NMR and 2D NOESY spectra. Such investigations may contribute to the selective substitution reactions of 3-hydroxy-2-naphthalenecarboxylic acid (3H2NA, $\text{pK}_{\text{a}_1}=2.6^8$) and its analogues, which are useful chemical raw materials and fluorescent compounds.⁸

EXPERIMENTAL

1D and 2D ^1H NMR spectra were recorded on a BRUKER AM-500 spectrometer at 300K (external standard: DSS at $\delta=0.00$ ppm). A 2D NOESY




FIG. 1 Position numbers of protons of TM β -CD and 3H2N.

spectrum was acquired in a sweep width of 3000Hz, 150ms mixing time, 512×2048 data points.

RESULTS AND DISCUSSION

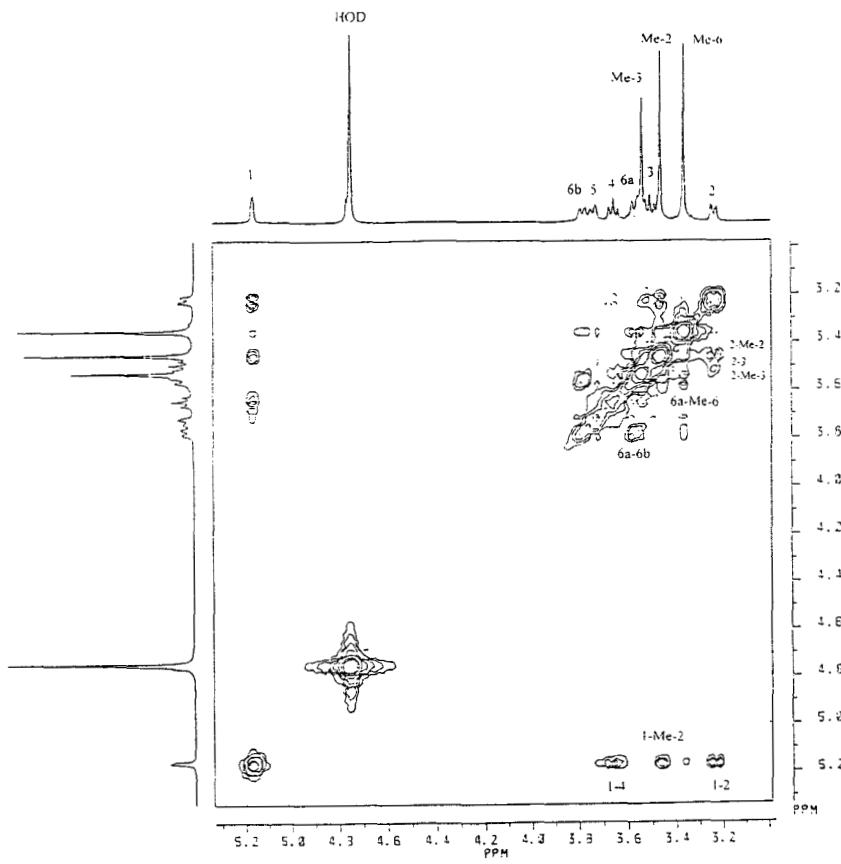
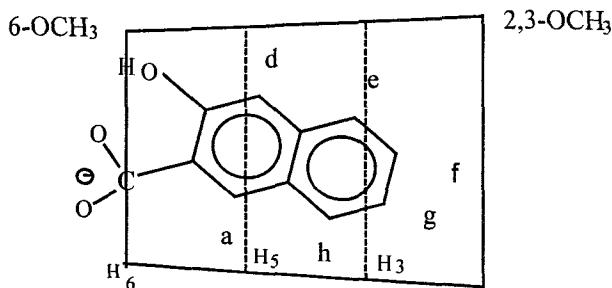

FIGURE 1 shows the position, and numbers of protons of TM β -CD and 3H2N. From the correlation in 2D COSY and NOESY spectra, as well as the ^1H NMR spectrum of TM β -CD in CDCl_3 ,² we assigned all the resonances of protons of TM β -CD in D_2O (external standard: DSS at $\delta=0.00$ ppm). The chemical shifts of H1-H6 and 2, 3, 6-OCH₃ protons are 5.28, 3.34, 3.67, 3.74, 3.85, 3.64 (H6a), 3.85 (H6b), 3.51, 3.60 and 3.38 ppm, correspondingly.

FIGURE 2 exhibits the 1D 500 MHz ^1H NMR and portion of 2D NOESY spectra of the inclusion complex of TM β -CD with 3H2N in D_2O at 300K. The resonance of 3H2N can be easily assigned from the correlation in the 2D NOESY spectrum. The assignments of the proton signals of TM β -CD were undertaken on the basis of another portion of the 2D NOESY spectrum (see FIGURE 3) and comparison with


FIG. 2 The 1D 500 MHz ^1H NMR and portion of 2D NOESY spectra of the inclusion complex of TM β -CD with 3H2N in D_2O at 300K.

^1H NMR spectra of related compounds.⁹ In the presence of 3H2N, due to the magnetic anisotropy effect of the naphthalene ring of 3H2N, all the resonances of TM β -CD shift upfield. The upfield shifts of H1-H6 and OCH₃ protons at 2, 3, and 6 positions are 0.10, 0.10, 0.18, 0.08, 0.13, 0.09 (H6a and H6b), 0.06, 0.07 and 0.03

FIG. 3 The TM β -CD portion of 2D NOESY spectrum of the inclusion complex of TM β -CD with 3H2N in D₂O at 300K.

ppm, respectively. The most remarkable shifts are found for H3 and H5 protons in the interior of the cavity of TM β -CD. In the 2D NOESY spectrum, the cross-peaks connecting the Ha resonance of 3H2N to the H5, H3 and OCH₃ protons at 6 position of TM β -CD are clearly observed. This indicates that the Ha proton is situated close

FIG. 4 Proposed conformation of the 3H2N-TM β -CD inclusion complex in D₂O. ---H3 and -----H5 show planes comprised of the corresponding atoms of TM β -CD.

to these protons of TM β -CD. The cross-peaks connecting the Hd proton to the H5 and H3 protons can also be seen clearly, but that connecting to 6-OCH₃ protons cannot be found. This indicates that the Hd proton is situated near the H5 and H3 protons, but far from 6-OCH₃ protons. The cross-peaks connecting the He, Hf, Hg and Hh atoms of 3H2N to H3 atom of TM β -CD can be obviously appreciated. This shows that He, Hf, Hg and Hh atoms of 3H2N are near the H3 atom of TM β -CD. The correlation between the Hf proton and 2-OCH₃ protons is also clear, while that between Hg and 2-OCH₃ protons is obscure. This suggests that the Hf atom of 3H2N is near 2-OCH₃ protons of TM β -CD as compared to the Hg atom. It seems that the 2-OCH₃ group may point to the molecular axis of TM β -CD, while the 3-OCH₃ group points outside the cavity. Thus the cross-peak connecting the Hf atom to the 3-OCH₃ group does not appear. From what has been discussed above, the conformation of the TM β -CD-3H2N inclusion complex in D₂O is proposed as shown in FIG. 4, in which TM β -CD is illustrated simply by its inner cavity and 3H2N is depicted according to the crystal structure of 3H2NA.¹⁰ The naphthyl group of 3H2N inserts lengthwise into the cavity of TM β -CD from the 6-OCH₃ side and gives a tilt with the molecular axis of it. Therefore, we may predict that the

substitution of the Hf and Hg protons of 3H2N occurs more easily than that of the Hd, He and Hh atoms, which are deeper enclosed within the cavity of TM β -CD.

ACKNOWLEDGEMENT

This research is supported by National Science Foundation of China (No.29671019).

REFERENCES

1. Bender M. L. and Komiya M. *Cyclodextrin Chemistry*, Springer Verlag, New York, 1978. b) Szejtli J. *Cyclodextrins and their Inclusion Complexes*, Academiai Kiado, Budapest (1982). c) Wenz G. *Angew. Chem. Int. Ed. Engl.*, **33**, 803(1994).
2. Johnson J. R., Shankland N. and Sadler I. H. *Tetrahedron*, **41**, 3147(1985). See also: b) Kano K. and Tatsumi M. *J. Org. Chem.*, **56**, 6579(1991).
3. Hirai H., Shiraishi Y., Mihori H., Saito K., and Kawamura T. *Poly. J(Japan)*, **28**, 91(1996).
4. Iglesias E. and Fernandez A. *J. Chem. Soc. Perkin Trans. 2*, **1998**, 1691.
5. Hirai H., Shiraishi Y., Mihori H. and Kawamura T. *Poly. J(Japan)*, **27**, 1064(1995).
6. Komiya M. *J. Chem. Soc. Perkin Trans. 1*, **1989**, 2031.
7. Komiya M. and Hirai H. *J. Am. Chem. Soc.*, **105**, 2018(1983).
8. Kovi P. J. and Schulman S. G. *Anal. Chem.*, **45**, 989 (1973).
9. Bosti A., Perly B. and Hadjoudis E. *J. Chem. Soc. Perkin Trans. 2*, **1997**, 89.
10. Gupta M. P. and Dutta B. P. *Cryst. Struct. Comm.*, **4**, 37(1975).

Date Received: October 1, 1999
Date Accepted: December 23, 1999